Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Rui-Qin Fang,^a Xian-Ming Zhang,^a Hai-Shun Wu^a and Seik Weng Ng^{a,b}*

^aSchool of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.007 Å R factor = 0.021 wR factor = 0.054 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The anionic entity in the title octamolybdate, $(C_6H_{14}N_2)_2[Mo_8O_{26}] \cdot 4H_2O$, has a chain structure in which the $[Mo_8O_{26}]^{4-}$ units share terminal O atoms. The O atoms in the chain are two-, three- and four-coordinate. The anionic unit occupies a special position of $\overline{1}$ site symmetry and the

Bis(1,4-Diazoniabicyclo[2.2.2]octane)

octamolybdate(VI) tetrahydrate

Mo^{VI} atoms are all octahedrally coordinated.

Received 25 February 2004 Accepted 1 March 2004 Online 13 March 2004

Comment

Octamolybdates are generally isolated as discrete clusters having MoO_4 , MoO_5 and/or MoO_6 polyhedra; occasionally, the anions are linked together in a polymeric structure (Böschen *et al.*, 1974; Gatehouse & Leverett, 1970). To date, some six different octamolybdate cluster types are known and the manner in which the MoO_x polyhedra are linked together is well understood (Hagrman *et al.*, 1999). For their synthesis, the octamolybdates require the use of a structure-directing reagent; with 1,6-hexanediamine as the agent, the resulting octamolybdate, interestingly, has all the Mo atoms in octahedral environments (Xu *et al.*, 1996). The anions are linked into a chain, and it can be viewed either as an oxygen-sharing $[Mo_8O_{28}]^{8-}$ cluster or as a self-aggregation of γ -octamolybdate clusters. The features of the chain are described in detail in that report.

The use of triethylenediamine in place of 1,6-hexanediamine affords the corresponding title octamolybdate, $2C_6H_{14}N_2^{2+}\cdot[Mo_8O_{26}]^{4-}\cdot 4H_2O$, (I) (Fig. 1), the anionic unit of which adopts a chain structure (Fig. 2), with the octamolybdate unit on a special position of $\overline{1}$ site symmetry. The structure of (I) is stabilized by extensive hydrogen bonding (Table 2).

Experimental

Molybdenum trioxide (0.143 g, 1 mmol), triethylenediamine (0.784 g, 0.7 mmol) and water (6 ml) were placed in a 15 ml Teflon-lined stainless-steel bomb, which was then heated at 433 K for 108 h. The bomb was cooled slowly to room temperature and colourless block-like crystals of (I) were isolated in about 45% yield. CHN analysis,

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The asymmetric unit of (I), together with the centrosymmetricallygenerated other half of the octamolybdate unit, showing the atomnumbering scheme and displacement ellipsoids drawn at the 75% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 + x, y, z.]

Figure 2

A view of the polyanionic $[Mo_8O_{26}]^{4-}$ chain. [Symmetry code: (iii) x - 1, y, z.]

found: C 9.63, H 2.49, N 3.72%; calculated for C₁₂H₃₆N₄O₃₀Mo₈: C 9.59, H 2.53, N 3.68%.

Crystal data

$D_x = 2.835 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 8568
reflections
$\theta = 2.3 - 27.0^{\circ}$
$\mu = 2.90 \text{ mm}^{-1}$
T = 298 (2) K
Block, colourless
$0.42 \times 0.33 \times 0.15 \text{ mm}$

Data collection

Bruker APEX CCD area-detector	2925 independent reflections
diffractometer	2885 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.017$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 2002)	$h = -9 \rightarrow 8$
$T_{\min} = 0.437, T_{\max} = 0.670$	$k = -27 \rightarrow 27$
8501 measured reflections	$l = -10 \rightarrow 12$
Refinement	
Refinement on F^2	$w=1/[\sigma^2(F_o^2) + (0.0248P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.021$	+ 5.4418P]

where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta\rho_{\text{max}} = 1.13 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{\text{min}} = -0.64 \text{ e } \text{\AA}^{-3}$

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.054$ S = 1.062925 reflections 244 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Mo1-O1	2.051 (2)	Mo2-O3	2.153 (3)
Mo1-O2	2.319 (2)	Mo3-O6	1.921 (3)
Mo1-O3	2.153 (2)	Mo3-O8	2.228 (2)
Mo1-O4	1.692 (3)	Mo3-O10	1.710 (3)
Mo1-O5	1.707 (3)	Mo3-O11	1.719 (3)
Mo1-O6	1.928 (2)	Mo3-O12	1.985 (3)
Mo2-O2	1.867 (2)	Mo4-O1 ⁱⁱ	1.782 (2)
$M_{0}^{2} - 07$	1 692 (2)	$M_04 - O3^i$	1 896 (2)
$M_{0}^{2} - 08$	2,433(2)	$M_{04} - 08$	2.228(3)
$M_0^2 = O^{8^i}$	1.964(2)	$M_{04} - 09$	2.226(2)
Mo2 00	1.701(2)	Mo1 012	1.896(2)
$M_{02} = 0^{7}$ $M_{03} = 0^{7}$	2,270(2)	Mo4_012	1.690(2) 1.690(3)
1105-02	2.279 (2)	10104-015	1.055 (5)
O1-Mo1-O2	85.1 (1)	O6-Mo3-O12	153.1 (1)
O1-Mo1-O3	77.8 (1)	O8-Mo3-O10	92.0 (1)
O1 - Mo1 - O4	101.2 (1)	08-Mo3-011	160.3 (1)
$01 - M_01 - 05$	901(1)	$08 - M_{03} - 012$	72.5 (1)
01 - Mo1 - 06	157.3(1)	$010 - M_{03} - 011$	104.3(1)
$0^{2}-M_{0}^{1}-0^{3}$	685(1)	010 - Mo3 - 012	100.6(1)
02 - Mo1 - 04	160.8(1)	010 M03 - 012 011 - M03 - 012	93.3(1)
02 - Mo1 - 05	92.9(1)	$01^{ii} - M_0 4 - 03^{i}$	97.2 (1)
02 - Mo1 - 06	73.4(1)	$01^{ii} - M_0 4 - 08$	98.8 (1)
$O_2 = Mo_1 = O_0$ $O_3 = Mo_1 = O_4$	94.9 (1)	$01^{ii} - M_0 4 - 09$	171 1 (1)
03 - Mo1 - 05	1583(1)	$01^{ii} - M_0 4 - 012$	95.6 (1)
03 - Mo1 - 06	875(1)	$01^{ii} - M_0 4 - 012$	104.2(1)
04 - Mo1 - 05	105.1(1)	$O_{1}^{i} - M_{0}^{i} - O_{1}^{i}$	72.8(1)
04 - Mo1 - 05	105.1(1) 071(1)	O_3^i Mod O_9^i	72.0(1) 82.2(1)
04 - M01 - 00	97.1(1) 08.1(1)	$O_{3^{i}} M_{04} O_{12}$	146.0(1)
$O_2 M_{O_2} O_3^2$	77.2(1)	$O_{2^{i}}^{i}$ Mo4 O_{12}^{i}	140.0(1) 105.2(1)
$O_2 = MO_2 = O_3$	104.2(1)	$O_{3} = MO_{4} = O_{13}$	725(1)
02 - M02 - 07 02 - Mo2 - 08	771(1)	$08 M_{04} O_{12}$	72.3(1) 74.1(1)
$O_2 = MO_2 = O_8^{i}$	1/1(1)	$08 M_{04} - 012$	74.1(1) 156.0(1)
$O_2 = MO_2 = O_0$	143.0(1) 101 2 (1)	$00 M_{04} 012$	150.9(1)
$O_2 = MO_2 = O_7$	101.2(1) 100.4(1)	09 - M04 - 012	80.4(1)
$O_3 = MO_2 = O_7$	100.4(1)	09 = 1004 = 013 012 Mat 012	101.0(1)
$O_3 = MO_2 = O_8^{i}$	72.2(1)	$M_{2} = M_{1} = M_{2} = M_{2}$	101.9(1) 172.7(2)
$O_3 = MO_2 = O_8$	15.3(1)	$M_{01} = 01 - M_{04}$ Mo1 = 02 = M_{02}	1/2.7(2) 108.4(1)
03 - M02 - 09	130.1(1) 178.4(1)	$M_{01} = 02 = M_{02}$	100.4(1)
$07 - M_0 2 - 08^{i}$	1/0.4(1) 102.7(1)	$M_{01} = 02 = M_{03}$	91.0(1) 112.4(1)
07 - M02 - 08	102.7(1) 102.1(1)	$M_{02} = 02 = M_{03}$	112.4(1) 104.5(1)
$O^{2} - MO^{2} - O^{2}$	105.1(1)	$M_{01} = 03 = M_{02}$	104.3(1) 147.7(1)
08 - M02 - 08	70.3(1)	$Mo1 = 03 = Mo4^{i}$	147.7(1) 107.7(1)
$O_{0}^{0} = M_{0}^{0} = O_{0}^{0}$	/3./(1)	$M_{02} = 05 = M_{04}$	107.7(1)
08 - M02 - 09	90.8 (1) 74.5 (1)	$M_{01} = 00 = M_{03}$	11/.8(1)
02 - Mo3 - 06	74.5 (1)	$M_{02} = 08 = M_{04}$	94.4 (1)
02 - M03 - 08	/4.1 (1)	$M_{2} = 08 = M_{2}^{2}$	103.3(1)
$O_2 = MO_2 = O_{11}$	103.9 (1)	$M_{02} = 08 = M_{03}$	95.5 (1)
02 - M03 - 011	91.0 (1)	$M_{0}2^{i} = 08 - M_{0}3$	103.3(1)
02 - M03 - 012	83.2 (1) 87.0 (1)	$M_{2} = 08 - M_{04}$	102.4(1)
00 - M03 - 08	87.0(1)	$M_{02} = 09 = M_{04}$	11/.2(1)
00 - M03 - 010	9/.2 (1)	M03 - 08 - M04	94.5 (1)
00-M03-011	101.7(1)	M03-012-M04	115.0 (1)

Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 + x, y, z; (iii) x - 1, y, z.

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O1W−H1W1···O13	0.85	2.01	2.819 (4)	161
$O1W-H1W2\cdots O12^{i}$	0.86	2.13	2.946 (4)	159
$O2W - H2W1 \cdots O10^{ii}$	0.86	1.96	2.788 (4)	161
$O2W - H2W2 \cdot \cdot \cdot O11^{iii}$	0.88	2.03	2.908 (5)	175
$N1-H1\cdotsO1W$	0.91	1.75	2.636 (5)	163
$N2-H2\cdots O2W$	0.91	1.81	2.682 (5)	161

Symmetry codes: (i) -x, 1 - y, -z; (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (iii) 1 - x, 1 - y, -z.

The H atoms of the cation were placed at calculated positions [C - H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)]$ in the riding-nstrmodel approximation. The water H atoms could not be located; they were found using the *HYDROGEN* option (Nardelli, 1999) in the *WinGX* package (Farrugia, 1999) but were not refined. For these four H atoms, $U_{iso}(H)$ was set to $1.2U_{eq}(O)$. In the final difference Fourier map, the largest peak was about 1 Å from the O2W atom.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve

structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank Shanxi Normal University and the University of Malaya for their generous support of this study.

References

Böschen, I., Buss, B. & Krebs, B. (1974). Acta Cryst. B30, 48-56.

- Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winsonsin, USA.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gatchouse, B. M. & Leverett, P. (1970). J. Chem. Soc. Chem. Commun. pp. 740-741.
- Hagrman, P. J., Hagrman, D. & Zubieta, J. (1999). Angew. Chem. Int. Ed. 38, 2638–2684.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Xu, Y., An, L.-H. & Koh, L.-L. (1996). Chem. Mater. 8, 814-818.